Referat

Schlagworte
Massivumformung, inkrementelle Umformverfahren, Drückwalzen, FEM, oberes Schrankenverfahren, Kaltverfestigung, Bauschinger-Effekt, Plastizitätstheorie
Inhalt

1 Einführung .. 23
 1.1 Problemstellung .. 23
 1.2 Ziel der Arbeit ... 24
2 Stand der Technik ... 26
 2.1 Drückwalzverfahren .. 26
 2.1.1 Historie .. 26
 2.1.2 Einordnung in die Fertigungstechnik .. 27
 2.1.3 Verfahrensvarianten des Drückwalzens .. 28
 2.1.4 Anwendungsgebiete ... 31
 2.1.5 Werkstoffe ... 32
 2.2 Verfahrenscharakteristik und Kenngrößen beim Drückwalzen 34
 2.2.1 Umformzone und Werkstofffluss .. 35
 2.2.2 Stau- und Wulstbildung ... 37
 2.2.3 Verfestigung .. 39
 2.2.4 Temperatur .. 40
 2.2.5 Quasistationärer Zustand ... 41
 2.2.6 Reibverhältnisse beim Drückwalzen ... 41
 2.2.7 Abstreckgrad .. 42
 2.2.8 Vorschub und Arbeitsgeschwindigkeit .. 43
 2.2.9 Werkzeugparameter ... 43
3 Stand der Forschung .. 45
 3.1 Elementare Ansätze .. 45
 3.1.1 Lösungsverfahren der elementaren Plastizitätstheorie ... 45
 3.1.2 Kraftberechnung mittels Schrankenmethode .. 48
 3.1.3 Formänderungs-Modell-Methode .. 50
 3.2 FEM-Einsatz .. 51
 3.2.1 Implizite Lösungsansätze ... 52
 3.2.2 Explizite Lösungsansätze ... 53
3.2.3	FEM-Einzellösungen	54
3.2.4	FEM-Simulation des Drückwalzens	55
3.3	Zusammenfassung Stand der Forschung	59
4	Modellierung des Drückwalzprozesses	60
4.1	FEM-Berechnung	60
4.1.1	Simulationspaket Forge	60
4.1.2	Referenzversuch	62
4.1.3	FE-Modell	66
4.1.4	FE-Analyse	69
4.1.5	Vergleich mit dem Versuch	73
4.2	Theoretische Grundlagen zur Modellierung	77
4.2.1	Oberes Schrankenverfahren	77
4.2.2	Fließspannung	80
4.3	Modellierung	85
4.3.1	Geometrische und kinematische Betrachtungen	86
4.3.2	Leistungsberechnung in der Umformzone	90
4.3.3	Verfestigung des Werkstoffes	99
4.3.4	Gedrückte Fläche	101
4.3.5	Kraft- und Drehmomentberechnung	102
4.4	Zusammenfassung der Modellierung	104
5	Implementierung und Verifikation	106
5.1	Softwaretechnische Umsetzung	106
5.1.1	Entwicklungsplattform	106
5.1.2	Programmablauf und Struktur	107
5.1.3	User-Schnittstelle	108
5.1.4	Implementierung der Berechnung	110
5.2	Vergleich mit dem Referenzversuch	110
5.2.1	Leistung bei unterschiedlichem Mesh-Parameter	111
5.2.2	Verfahrenskräfte und Drehmoment	112
5.2.3 Lokale Kenngrößen .. 116
5.3 Verifikation des Modells mit verschiedenen Versuchsreihen 120
 5.3.1 Variation des Abstreckgrades .. 121
 5.3.2 Variation des Rollenwinkels ... 123
 5.3.3 Variation des Vorschubes ... 124
 5.3.4 Verifikationsuntersuchungen mit 42CrMo4 125
5.4 Zusammenfassung der Implementierung und Verifikation 128
6 Zusammenfassung und Ausblick ... 130
7 Literatur ... 133